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Abstract. Magnetohydrodynamics studies in laboratory experiments have long been restricted to low mag-
netic Reynolds number flows, mainly as a result of the very high magnetic diffusivity λ = 1/µσ of common
conducting fluids (µ is the fluid’s magnetic permeability and σ its electrical conductivity). The best con-
ductivities are found in liquid metals which have a unit magnetic permeability, relative to vacuum. We
show experimentally that a suspension of solid particles with a high magnetic permeability in a liquid metal
yields an effective medium that has a high electrical conductivity and an enhanced magnetic permeability.
The dispersion of the beads results from the turbulent fluid motion. The range of accessible magnetic
Reynolds number can be increased by a factor of as much as 4 in our experimental setup.

PACS. 47.65.+a Magnetohydrodynamics and electrohydrodynamics – 75.50.Mm Magnetic liquids –
47.55.Kf Multiphase and particle-laden flows

1 Introduction

The study of flows in fluids that have magnetic properties
has led to the development of ferrohydrodynamics (FHD),
with very rich applications in engineering and in the
understanding of various instability phenomena [1]. Fer-
rofluids are usually made of colloidal suspensions of iron
particle in a solvent and have a very small electrical
conductivity. On the other hand, the study of flows of
electrically conducting fluids, or magnetohydrodynamics
(MHD), is of relevant in many physical or astrophysical
situations. Important effects, such as the generation of
self-excited dynamos, are expected to occur [2]. The MHD
equations for the magnetic induction are:

∂B
∂t

= curl (u×B) +
1
µσ

∆B, divB = 0, (1)

where u is the velocity of the fluid, with permeability µ
and conductivity σ. The relative amplitude of the induc-
tion term to the dissipative one is given by the magnetic
Reynolds number

Rm = µσUL, (2)

where L and U are characteristic size and speed of the flow
motion. For example dynamo action is supposed to occur
when the stretching of magnetic field lines exceeds the
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Joule dissipation, that is above a critical value R∗m [2]. The
search of higher Rm has led experimentalists to develop
studies in high conducting liquid metals such as gallium [3]
or sodium [4]. However, molten metals have a quite small
kinematic viscosity ν and hence a very small magnetic
Prandtl number Pm = µσν: flows with very high kinetic
Reynolds numbers must be produced to achieve even mod-
erate magnetic Reynolds number situations. This results
in a high energetic cost for the production of flows with
Rm

∼
> O(1). Indeed, it may be shown dimensionally, and

it is confirmed experimentally [5], that the power needed
to generate a turbulent flow with characteristic velocity U
and volume V = L3 varies as:

P = KρU3V 2/3, (3)

where the constantK is flow dependent and ρ is the fluid’s
density. In other words, the magnetic Reynolds number
in a given experiment depends on the flow volume and
available mechanical power input as:

Rm = µσ

(
P

Kρ

)1/3

V 1/9. (4)

The above expression clearly shows how difficult it is to
access high Rm regimes in the laboratory: an increase by
even a modest factor of 2 requires an 8-fold increase in the
power input or 512-fold increase in the flow volume. The
only linear factors are the conductivity and the permeabil-
ity. The former is optimized using liquid sodium for which
appropriate technology has been made available during
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the development of the cooling circuits of fast breeder nu-
clear reactors. In this letter we show that the effective
permeability of a flow can be enhanced using a binary
mixture of liquid metal and magnetic solid particles.

2 Experimental setup

Our experimental set-up is schematically shown in
Figure 1. Two 11 kW ac-motors are used to drive disks
(radius R = 10 cm) at a constant frequency Ω, adjustable
in the range 5 to 25 Hz. The disks are fitted with verti-
cal blades (height equal to 5 mm) to ensure an inertial
entrainment of the fluid, for which equation (3) is veri-
fied [5]. The disks are counter rotated, to enhance differ-
ential rotation which is a key feature of magnetic induction
in conducting liquids [3,4].

The enclosing cylindrical vessel has an effective vol-
ume of 6 liters. It is filled with liquid gallium (den-
sity ρ = 6.09 × 103 kg m−3), electrical conductivity
(σ = 3.68 × 106 ohm−1 m−1, kinematic viscosity is ν =
3.1×10−7 m2 s−1 ). A variable volume fraction Φ of spher-
ical iron beads (diameter d = 6.35 mm) is added to the
gallium. The integral kinematic and magnetic Reynolds
numbers of the flow are defined as: Re = 2πR2Ω/ν and
Rm = 2πµσR2Ω. Here ν and µ are effective values of
the binary gallium/iron beads mixture. In the range of
flow velocities covered by our experiment, the dispersive
grain pressure [6,7] homogenizes the particle distribution.
The flow is strongly turbulent: Re exceeds 106. The power
input by the driving disks (given by Eq. (3) with an ef-
fective density that depends on particle volume fraction
ρ = Φρiron + (1 − Φ)ρgallium) is dissipated into heat by
the turbulent motion and drained off by the cooling cir-
cuits located behind the disks. For each run at a fixed
rotation rate, the flow is kept at a constant temperature
θ ∈ [40, 80] ◦C. Two pairs of Helmholtz coils are set to pro-
duce an external field B0 up to 40 gauss, either parallel
or perpendicular to the rotation axis. Magnetic measure-
ments are performed inside the vessel using directional
and temperature compensated Hall probes with a Bell
9905 gaussmeter; the spatial resolution is 3 mm, with a
frequency range of 50 kHz in AC mode or 400 Hz in DC
mode.

3 Results

3.1 Measurement of an intrinsic magnetic Reynolds
number

In order to quantify the influence of the iron beads on the
magnetic properties of the binary mixture, we apply an
external magnetic field and we measure the magnetic in-
duction generated by the flow as a function of the rotation
rate and the volume fraction of iron beads. We first con-
sider the homogeneous case (Φ = 0): we measure the field
b induced by the fluid motion in the presence of an exter-
nally applied field B0. At low Rm, one is in a “quasistatic”

p(t)b(t)
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Cooling circuit

Pressure regulation (N  )

Fluid IN / OUT

MOTORMOTOR
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Fig. 1. Experimental set-up (not to scale). R = 10 cm, H =
10 cm. The Hall probe is located in the median plane, at a
variable distance D from the rotation axis.

regime [8], where equation (1) yields to leading order:

∆b ≈ −µσ(B0 ·∇)u. (5)

We show in Figure 2 that b has indeed a linear variation
with B0. The magnetic induction is mainly sensitive to
changes of the flow at integral scale: in the ‘passive vector’
regime considered here, the magnetic energy falls off very
rapidly at small scales – EB(k) ∼ k−11/3, in the standard
turbulence picture [3,8] – so that the large scale velocity
variations give the leading contribution. One observes in
Figure 2a that the induction varies smoothly with the lo-
cation of the measurement. In addition, the induced field
b strongly depends on the anisotropy of the flow and is
thus dependent on the orientations of b and B0. For exam-
ple, at the location of measurement in Figure 2b (median
plane, r = 5 cm), the transverse variation of the axial
speed ∂xuz is smaller than the differential rotation ∂zux.
This anisotropy persists as Re increases.

Equation (5) together with the above experimental
results enable us to define an intrinsic magnetic Reynolds
number Ri

m as:

Ri
m =

(
∂b

∂B0

)
Ω

, (6)

where the derivative is to be taken for a given flow geom-
etry and kinetic Reynolds number, here at constant ro-
tation rate Ω. Ri

m is thus experimentally obtained as the
slope of the curves b(B0) such as shown in Figure 2b. The
advantage of this definition is that the large scales velocity
gradients are taken into account both in magnitude and
direction in the value of Ri

m. We observe that the vari-
ations of Ri

m with Rm is linear but with different slopes
depending on the orientations, as shown in Figure 2c.

Another noteworthy feature is that the intrinsic mag-
netic Reynolds number Ri

m is quite small: Ri
m ∼ 0.01Rm,

see Figure 2c. This is an a posteriori justification of
the quasistatic approximation. Note that another defi-
nition of an intrinsic magnetic Reynolds number would
be: R′m = µσL′u′, with u′ the rms amplitude of veloc-
ity fluctuations and L′ an effective integral scale of the
flow. These quantities can be obtained from independent
measurements, such as pressure fluctuations and power



A. Martin et al.: Magnetic permeability of a diphasic flow, made of liquid gallium and iron beads 339

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B
0x

 [G]

b
z

 [G
]

(a)

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

1.2

B
0

 [G]

b
 [G

]

(b)

1 2 3 4 5 6
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Rm

R
m

i

(c)

Fig. 2. Induction measurements. (a) bz = f(B0x) at various
depth, (◦): r = 5 cm, (�): r = 8 cm, measured from the
rotation axis, at Ω = 6 Hz. (b) Effect of orientation: (+):
bz = f(B0x), (×): bx = f(B0z), Ω = 6 Hz. (c) Variation of
Ri

m with Rm. (∇): measurement of bx, with B0z applied, (4):
measurement of bz, with B0x applied.

consumption [5]; studies in a similar setup using water
as the working fluid lead to L′ ∼ 0.1L and u′ ∼ 0.4RΩ,
which again is consistent with our observation that there
is over an order of magnitude between the calculated
integral magnetic Reynolds number and the measured
intrinsic one.

3.2 Influence of the iron beads

Having defined an intrinsic magnetic Reynolds number
from the actual induction effects inside the flow, we can
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Fig. 3. Measurement of bz induced with B0x, at Ω = 14 Hz.
(◦): homogeneous flow, (×): bead volume fraction Φ = 0.3; (∗):
bead volume fraction Φ = 0.45.

Table 1. Gain in intrinsic magnetic Reynolds number for two
bead volume fraction, as a function of the rotation rate of the
disks driving the flow. Note that it is not a monotonic function
of either parameter.

Ω [Hz] 10 12 14 16 18

Rim(Φ = 0.3)

Rim(0)
(bx, B0z) 4.35 4.89 4.75 4.08 –

Rim(Φ = 0.3)

Rim(0)
(bz, B0x) 2.51 2.49 2.37 – –

Rim(Φ = 0.45)

Rim(0)
(bx, B0z) 3.61 – 3.31 – 3.00

Rim(Φ = 0.45)

Rim(0)
(bz, B0x) 4.59 – 4.29 – 4.00

study the influence of the volume fraction of iron beads
on the magnetic properties of the flow. Figure 3 shows
the variation of the induced field versus the applied field,
for the homogeneous flow and for two values of particle
volume fraction. It is readily observed that the presence
of iron beads increases the induction effects in the flow.

At a given rotation rate of the driving disks, the ratio
of the observed slopes to that of the homogeneous case
yields the gain in magnetic Reynolds number. Our results
for two bead volume fractions, at increasing rotation rates
of the disks driving the flow are shown in Table 1. We note
that the gain in magnetic Reynolds number can exceed
a factor of 4, a feature that would be quite difficult to
obtain by an increase of the velocity or the volume of the
homogeneous flow.

Given that the electrical conductivity of the iron beads
and of the liquid gallium are almost equal, it is tempt-
ing to associate these changes variations in the magnetic
properties (we will come back to that assumption). Then
the gain in magnetic Reynolds number is a measurement
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Fig. 4. Effective permeability of a gallium - iron bead mixture,
from equation (9). Our measurements are: (◦): bz, B0x, for Φ =
0.3, (#): bx, B0z , for Φ = 0.3, (×): bz, B0x, for Φ = 0.45, (+):
bx, B0z, for Φ = 0.45. The dash-dotted line corresponds to the
limit volume fraction above which the binary mixture behaves
like a solid.

of the relative effective permeability of the binary mixture
– µeff = Ri

m(Φ)/Ri
m(0).

The computation of µeff is possible only in two limits:
small volume fraction of beads or nearly equal magnetic
permeabilites of the two phases. In our case, µb � 1, and
the volume fractions are rather high. We can however,
give a crude estimate of µeff when the volume fraction is
large, such that the mean distance, a, between the beads
is small compared to their diameter, d. In that case, one
expects that the field lines tend to go to one bead to one
of its neighbour in order to follow regions of high magnetic
permeability. We consider a closed field line C of length `
in the medium, and write the Ampère theorem∫

C
Hd` ≡

∫
C

B
µeff

d` = I. (7)

Using the continuity of the normal component of B, we
get

d

µb
+ a ' d+ a

µeff
· (8)

Using the relation between a/d and volume fraction [6],
a/d = (Φ0/Φ)1/3 − 1, where Φ0 = π/3

√
2 ≈ 0.74 is the

maximum possible volume fraction for spheres in the bcc
geometry, and taking into account that µb � 1, we get

µeff '
1

1−
(
Φ
Φ0

)1/3
· (9)

Note that in the case of low volume fraction, one cannot
assume that the field line goes from one bead to its neigh-
bour; the total length of the field line across the beads is
then proportional to the volume fraction of the beads, and
one get µeff ' 1 + 3Φ as it should be [9].
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Fig. 5. Variation of the local magnetic Reynolds number with
the integral one, for a bead volume fraction Φ = 30%.

We have plotted in Figure 4 the variation of the effec-
tive permeability µeff given by equation (9). We observe
that it yields the right order of magnitude for the gain in
magnetic Reynolds number observed in our experiment.
However, the results reported in Table 1 show that the
gain in magnetic Reynolds number induced by the iron
beads also depends on the orientation of the measured
field components and on the rotation rate of the driving
disks. As the volume fraction of iron beads increases, the
anisotropy in the gain in Ri

m is reduced (see Fig. 4), but
the agreement with equation (9) is less satisfactory. We
also observe, in contrast with Figure 2c, that the local
Reynolds number Ri

m is now a non-linear function of the
integral one – see Figure 5. These observations show that
the mean spatial distribution of the iron beads and the ve-
locity fields of the two phases are certainly modified both
in magnitude and geometry when the disks rotation rate
increase. Further investigations of the velocity topology
and gradients in such a multiphase flow would be needed
in order to account for the precise shape of the observed
variation Ri

m vs. Rm.

4 Concluding remarks

In conclusion, we have proposed an intrinsic definition of
the magnetic Reynolds number which can be easily mea-
sured by studying the response of the flow to a small exter-
nal magnetic field. This can be of practical use to evaluate
Rm for arbitrary flow geometries. Our results show that
even a moderate volume fraction of iron beads in a liquid
metal leads to a significant increase of Rm which would
be difficult to achieve by increasing the velocity or the
volume of the homogeneous flow.
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